Chem. Ber. 107, 3089-3103 (1974)

Kernrésonanzspektroskopische Untersuchungen an Borverbindungen, VIII¹⁾

Vergleichende Betrachtungen von ¹¹B- und ¹⁴N-Kernresonanzdaten dreifach koordinierter Bor-Verbindungen mit ¹³C- und ¹⁴N-Kernresonanzdaten von Carbonsäurederivaten und Carbonium-Ionen

Heinrich Nöth* und Bernd Wrackmeyer

Institut für Anorganische Chemie der Universität München, D-8000 München 2, Meiserstr. 1 Eingegangen am 7. März 1974

Die δ^{14} N-Werte von N-methyliertem Harnstoff, Carbamidsäureester, Acetamid und Diacetamid stehen mit den δ^{14} N-Daten der isosteren Aminoborane B[N(CH₃)₂]₃, CH₃B[N(CH₃)₂]₂ und (CH₃)₂BN(CH₃)₂ in linearer Beziehung. Dies gilt auch für die Reihe der Guanidinium-, Amidinium- und Imonium-Ionen und die mit ihnen isoelektronischen Aminoborane. Ein Vergleich der δ^{13} C- und der δ^{11} B-Daten für die erste Verbindungsreihe spiegelt zwar die zunehmende positive Ladung am betrachteten Zentrum – allerdings nur im Trend – wieder, da keine lineare Korrelation erkennbar ist. Diese ist jedoch für die Reihe der Carbonium-Ionen und Borane gegeben. Es gilt δ^{11} B = 0.393 δ^{13} C – 30.73. Für BH₃ leitet sich δ^{11} B zu -70.0 ppm ab.

Nuclear Magnetic Resonance Studies on Boron Compounds, VIII1)

Comparison of ¹¹B and ¹⁴N N.M.R. Data of Tervalent Boron Compounds with ¹³C and ¹⁴N N.M.R. Data of Derivatives of Carbonic Acids and Carbonium Ions

The $\delta^{14}N$ data of *N*-methylureas, -carbamates, -acetamide, and -diacetamide correlate linearly with the $\delta^{14}N$ data of the isosteric aminoboranes B[N(CH₃)₂]₃, CH₃B[N(CH₃)₂]₂, and (CH₃)₂-BN(CH₃)₂. The same is true for the series of the guanidinium, amidinium, and imonium ions and the corresponding isoelectronic aminoboranes. A comparison of $\delta^{13}C$ and $\delta^{11}B$ n.m.r. chemical shifts for the first series of compounds only shows a trend towards low field shift as the positive charge at the respective atoms increases. However, in the case of carbonium ions and isoelectronic boranes there is a linear relationship between $\delta^{13}C$ and $\delta^{11}B$, as given by the equation $\delta^{11}B = 0.393 \,\delta^{13}C - 30.73$. From the data $\delta^{11}B = -70.0$ ppm is deduced for monomeric BH₃.

Ein Vergleich isoelektronischer Systeme ist sowohl vom chemischen wie strukturellen Standpunkt aus gleich nützlich²⁾. Analogien, die sich hieraus ergeben, dürfen allerdings nicht für zu weitreichende Schlüsse genutzt werden. Dies gilt im besonderen Maße für bestimmte physikalische und spektroskopische Eigenschaften. Im Bereich der ¹¹B-Kernresonanzspektroskopie fanden wir vor einigen Jahren eine lineare Korre-

¹⁾ VII. Mitteil.: H. Nöth und B. Wrackmeyer, Chem. Ber. 107, 3070 (1974), vorstehend.

²⁾ H. Schmidbaur, Fortschr. Chem. Forsch. 13, 167 (1969).

lation zwischen $\delta^{11}B$ und $\delta^{13}C$ isoelektronischer tetrakoordinierter Boranate und Methan-Derivate³⁾, Spielvogel und Purser⁴⁾ kamen unabhängig von uns auf dieselbe Beziehung, jedoch stand ihnen ein wesentlich größeres Datenmaterial zur Verfügung. Dieses ermöglichte auch die Aufstellung paarweiser Substituentenparameter, mit deren Hilfe etwa die chemischen Verschiebungen $\delta^{11}B$ bisher unbekannter Boranate BRXYZ⁻ berechnet werden können⁴c).

Seit Einführung der ¹³C-Fourier-NMR-Spektroskopie werden rasch immer mehr δ^{13} C-Daten verfügbar⁵⁾. Gleiches gilt auch für ¹⁴N-NMR-Untersuchungen⁶⁾. Eine vergleichende Betrachtung dreifach koordinierter Bor-Verbindungen mit entsprechenden, nach Möglichkeit isoelektronischen Systemen schien uns daher möglich und geboten, dies umso mehr, als wir im Bereich der vierfach koordinierten Verbindungen eine lineare Beziehung zwischen δ^{14} N von Amin-Boranen und δ^{13} C von Alkanen fanden⁷⁾. Es galt zu prüfen, ob analoge Beziehungen auch bei trigonal-planar koordinierten B-, C- und N-Systemen bestehen.

Unmittelbar vergleichbar sind die in Tab. 1 aufgeführten Systeme der Borane (1a-15a) und Carbonium-Ionen (1b-15b) mit gleichen oder zumindest gleichartigen Substituenten. Sie sind isoelektronisch und sehr wahrscheinlich auch isostrukturell. Darüber hinaus kann man auch Carbonsäurederivate in die Betrachtung einbeziehen. Die Tab. 2 zeigt entsprechende Verbindungsklassen, wobei wir, den Formalismus der VB-Betrachtung nützend, nur die wichtigsten Grenzstrukturen anführen. Die Carbonsäurederivate 16b-25b sind mit den entsprechenden Boranen 16a-25a zwar nicht mehr isoelektronisch, wohl aber strukturell verwandt. Wir legen dieser Betrachtung zu Grunde a) die formale Analogie zwischen einer Borylgruppe X₂B und einer Acylgruppe RCO, b) die planare Anordnung der Substituenten um das B- bzw. Carbonyl-C-Atom, c) die Mesomeriestabilisierung der Systeme. Diese Analogie schlägt sich auch in den Reaktionen der Borane und Acylverbindungen z. B. mit Diazoalkanen^{8.99} nieder.

Die für die Diskussion erforderlichen Daten, in der Tab. 3 zusammengestellt, entstammen teils eigenen Messungen $1.3.10-12^{\circ}$, teils der Literatur.

In Aminoboranen $R_{3-n}B(NR'_{2})_n$ (n = 1,2,3) verschiebt sich nach unseren Untersuchungen das ¹⁴N-NMR-Signal mit sinkendem B:N-Verhältnis zu tieferem Feld¹⁰. Um eine gemeinsame Basis für die Diskussion der beobachteten Effekte zu haben, bezogen wir uns auf die δ^{14} N-Werte der den Aminoboranreihen zugrunde liegenden Amine HNR'₂. Wir wiesen in diesem Zusammenhang aber bereits darauf hin, daß

- ⁷⁾ B. Wrackmeyer, Dissertation, Univ. München 1973.
- 8) J. E. Leffler und B. G. Ramsay, Proc. Chem. Soc. (London) 1961, 117.
- ⁹⁾ H. Whitlock, J. Amer. Chem. Soc. 84, 3807 (1962).
- 10) W. Beck, W. Becker, H. Nöth und B. Wrackmeyer, Chem. Ber. 105, 2883 (1972).
- ¹¹⁾ H. Nöth und B. Wrackmeyer, Chem. Ber. 106, 1145 (1973).
- 12) H. Nöth, W. Tinhof und B. Wrackmeyer, Chem. Ber. 107, 518 (1974).

³⁾ H. Nöth und H. Vahrenkamp, Chem. Ber. 99, 1049 (1966).

^{4) 4a)} B. F. Spielvogel und J. M. Purser, Inorg. Chem. 7, 2156 (1968). - ^{4b)} J. Amer. Chem. Soc. 89, 5294 (1967). - ^{4c)} 93, 4418 (1971).

⁵⁾ G. C. Levy und G. L. Nelson, Carbon-13 nmr for Organic Chemistry, J. Wiley Interscience, New York 1972; J. S. Stothers, Carbon-13-nmr Spectroscopy, Academic Press, New York 1972.

⁶⁾ M. Witanowski und G. A. Webb, Annu. Rev. NMR-Spectrosc. 5A, 395 (1972); M. Witanowski und G. A. Webb, Nitrogen NMR, Plenum Press, London 1973.

Boran-Derivate	Carbonium-Ionen
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} $
$\begin{array}{cccc} R & & & R \\ I & & & & B \\ R & & & & B \\ N & N & & & N \\ I & I & I & I \\ \end{array}$	$\begin{array}{cccc} R & & & R \\ C & & & I \\ N & N & & N \\ I & I & I \\ & & & I \\ & & & & I \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
R R R 4a	R C⊕ R∕R A
$ \begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & $	ο΄ ↔ ο΄ 'ο ^{C®} ↓ 'ο´`ο 5 b
$\begin{array}{cccc} \mathbf{R} & \bullet & \mathbf{R} \\ \mathbf{I} & \bullet & \mathbf{I}_{\Theta} \\ \mathbf{B} & \bullet & \mathbf{B}^{\Theta} \\ \mathbf{O} & \bullet & \mathbf{O}^{\bullet} & \mathbf{O} \\ \mathbf{G} & \bullet & \mathbf{G}^{\bullet} \end{array}$	$\begin{array}{cccc} R & & & R \\ I \oplus & & & I \\ C \oplus & & & I \\ O & O & & O \\ I & & I \\ 6 \mathbf{b} & & I \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} R & & R \\ C \\ C \\ C \\ R \\ \end{array} \begin{array}{c} R \\ R \\ R \\ \end{array} \begin{array}{c} R \\ R \\ R \\ \end{array} $
S B S S 8 8	s´ 'œ `s´`s ' 8b

Tab. 1. Isoelektronische Borane und Carbonium-Ionen

Tab. 1 (Fortsetzung)

Boran-Derivate	Carbonium-Ionen
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
S´ ↔ S´ B` ↔ B° O´ O O´ O´ O´ O´ 12a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} & s' & s' \\ & c & s' \\ & s' & s' \\$

Tab. 2. Vergleichbare Boryl- und Acyl-Verbindungen

Tab. 2 (Fortsetzung)

Stickstoff-Verbindungen mit sp²-hydbridisiertem N-Atom eine bessere Basis bilden sollten ¹⁰), da auch der Stickstoff in den Aminoboranen trigonal-planar (meist verzerrt trigonal-planar) von Substituenten umgeben ist. Dies ist bekanntlich auch der Fall bei Carbonsäureamiden ¹³).

Nach Untersuchungen von Hampson und Mathias an Carbonsäureamiden¹⁴⁾, Thiocarbonsäureamiden¹⁵⁾ sowie Harnstoffen und Thioharnstoffen¹⁶⁾ verschiebt sich das ¹⁴N-NMR-Signal mit zunehmender positiver Ladung am Stickstoffatom feldabwärts. Damit spiegelt die Lage des Signals auch den Einfluß der (pp) π -Wechselwirkung auf die CN-Bindung wider. Dementsprechend haben die chemischen Verschiebungen δ^{14} N von Carbonsäureimiden (**21b**) kleinere Werte als die von Säureamiden (**20b**). Analoges gilt für den Vergleich von Diborylaminen (**21a**) mit Aminodialkylboranen (**20a**)¹⁰⁾.

Ersetzt man den Carbonylsauerstoff in Harnstoffen und Säureamiden durch Schwefel oder Selen, dann verschiebt sich das ¹⁴N-NMR-Signal zu tieferem Feld^{15,16)}. Dies reflektiert nicht notwendigerweise die durch einen höheren CN-Bindungsgrad induzierte höhere positive Ladung am Stickstoff. In den Isothiuroniumsalzen ist die CN-Bindung stärker als in Thioharnstoffen; dennoch wird keine Tieffeldverschiebung des ¹⁴N-NMR-Signals beobachtet. Merkliche Verschiebungen von $\delta^{14}N$ feldabwärts beobachtet man hingegen für (CH₃)₂NC(O)H in Trifluoressigsäure^{17,18} ($\delta^{14}N - 13$ ppm) oder für (CH₃)₂NC(O)H · B(C₂H₅)₃¹⁸ ($\delta^{14}N - 14$ ppm). Falls σ_p den Hauptanteil

¹³⁾ Tables of Interatomic Distances, Spec. Publ. Bd. 11, Chem. Soc., London 1958.

¹⁴⁾ P. Hampson und A. Mathias, Mol. Phys. 11, 541 (1966).

¹⁵⁾ P. Hampson und A. Mathias, Mol. Phys. 13, 361 (167).

¹⁶⁾ P. Hampson und A. Mathias, J. Chem. Soc. B 1968, 673.

¹⁷⁾ D. Herbison-Evans und R. R. Richards, Mol. Phys. 8, 19 (1964).

¹⁸⁾ Bekanntlich erfolgt die Protonierung von Carbonsäureamiden am Sauerstoffatom, vgl. G. A. Olah, A. M. White und D. H. O'Brienn, Chem. Rev. 70, 561 (1970).

cstern, Carbonsäureamiden, C Alkylhalogenboranen, Alkoxyb	arbonsäureimiden, C oranen, Bis(dialkylbo ca	Juanidinium-, Amidi ryl)oxiden, Ketonen, trbenium-Ionen und	inium-, Imonium- und Isothiuronium. Kohlensäureestern, Carbonsåureester Oxocarbenium-Ionen	salzen sowie von Tria n, Carbonsäure-anhyd	lkylboranen, riden, Alkyl-
Verbindung	811Ba.() (ppm)	814Nb,f) (ppm)	Verbindung	813Cc,r) (ppm)	814Nd.r) (ppm)
B[N(CH ₃) ₂] ₃	-27.3	+ 365	C(NH ₂) ¹		+314
CH ₃ B[N(CH ₃) ₂] ₂	-33.5	+ 340	HC(NH ₂)2 ⁺ [(CH ₃)2N]2CO [(CH ₃)2N]2CO	÷30.2	+ 267 + 329 291
(CH ₃) ₂ BN(CH ₃) ₂	- 44.6	+ 296	H ₂ CN(CH ₃) ²⁺ CH ₃ CO(N(CH ₃) ₂ CH ₃ C(SNH+	+ 25.0 - 12.6	++208
			HC(0)N(CH ₃) ₂ HC(S)N(CH ₃) ₂	+31.9	+276 +220
(CH ₃) ₂ BNHB(CH ₃) ₂	- 56.1		CH ₃ C(0)NHC(0)CH ₃	+-22.8	+-217
(CH ₃) ₂ BNCH ₃ B(CH ₃) ₂	- 58.3				
(C2H5)2BNHB(C2H5)2	-57.5	+ 250			
(C ₂ H ₅) ₂ BNCH ₃ B(C ₂ H ₅) ₂	- 59.7	+253			
CH ₃ B(OCH ₃)N(CH ₃) ₂	-31.8	+·325	C ₂ H ₅ OC(0)NH ₂ C ₅ H ₅ OC(0)NHCH ₃		+304+311
CH ₃ SB[N(CH ₃) ₂] ₂	- 34.6		[(CH ₃) ₂ N) ₂ CSCH ₃ ⁺ (CH ₃ HN) ₂ CSCH ₃ ⁺ (H ₂ N) ₂ CSCH ₃ ⁺		+ 300 + 278 -+ 270

Tab. 3. Kernresonanzspektroskopische Daten (8 11B, 8 13C, 8 14N) von Aminoboranen, Bis(diorganylboryl)aminen, Harnstoffen, Carbamidsäure-

		Tab. 3 (Fortset:	(Buni		
Verbindung	811Ba) (ppm)	Verbindung	813Cc) (ppm)	Verbindung	813C (ppm)
BlCH ₂] ₄ B	92.5 ^{d)}	C=0	-25.3		
B(CH ₃) ₃	- 86.0	$(CH_3)_2 C = 0$	- 9.5	(CH ₃) ₃ C ⁺	-135.4^{33}
(CH3)2B~CH=CH2 (CH3)2B0CH3 CH3B(OCH3)2 B(OCH1)3	- /4.5 - 53.0 - 29.5 - 18.3	CH3C(0)CH=CH2 CH3C(0)0CH3 (CH30)2C0		(CH3)2COH CH3C(OH)2 ⁺ C(OH)1 ⁺	$- 55.7^{33} + 1.6^{33} + 28.0^{33}$
(CH ₃) ₂ BOB(CH ₃) ₂ H ₂ BOCH ₃	52.5 42.2 e)	CH3C(0)OC(0)CH3	+27.3	H ₂ COH ⁺	- 29.2 ³³⁾
HB(UCH3)2 CH3B(H)OCH3 (CH3)2BH	26.1 47.5 e) 80.0 e)			HC(UH)2 ⁺ CH ₃ C(H)0H ⁺ (CH ₃) ₂ CH ⁺	+ 42.633 - 42.633 - 125.033
CH3BH2 BH3 B(C ₆ H5)3	73.0 e) 70.0 e) 60.0 52)			CH3CH2 CH3+ (C6H5)3C+	- 112.20 - 98.80 - 18.133
PhB(CH ₃) ₂	- 77.6 4)			C ₆ H ₅ C(CH ₃) ₂ +	- 61.053)
C4Hs	— 60.0 <i>d</i>)			(C ₆ H ₅)₂CCH ₃ (C ₆ H ₅)₂CH≁	- 5.633)
→B(CH ₃) ₂	81.825)			_с(сн₃)₂	86.829)
(CH ₃) ₂ BF (CH ₃) ₂ BCI CH ₃ B(H)CI (CH ₃) ₂ BBr				(CH ₃) ₂ CF ⁺ (CH ₃) ₂ CC1 ⁺ CH ₃ C(H)C1 ⁺ (CH ₃) ₂ CBr	- [42,734) - [20,034) - [07,87] - [26,034)
 a) Aus Lit. 10), wenn nicht anders b) Aus Lit. 9). c) Aus Lit. 5). d) Diese Arbeit. e) Aus anderen NMB. Diaton abose 	vermerkt. ochárat siche Text				

or but and certain Mrk-Datin abgeomate, since 1 ext. Die chemischen Verschibungen die relativ zu BF3. O(C,H,Q)2, NO3⁻ und CS3, jeweils als externe Standards, angegeben. G. A. Olah, D. A. Beul und P. W. Westermann, D. Amer. Chem. Soc. 35, 3387 (1973).

zur chemischen Verschiebung δ^{14} N beisteuert, dann beeinflußt die Gegenwart einer C=S- oder C=Se-Bindung nicht nur die CN-Bindung in dem genannten Sinn, sondern trägt offenbar zu einer niedrigeren mittleren Anregungsenergie ΔE bei.

In Abb. 1 sind die δ^{14} N-Daten vergleichbarer Bor-, Stickstoff- und Kohlenstoff-Stickstoff-Verbindungen eingetragen. Die fast lineare Beziehung belegt analoge Einflüsse auf die chemische Verschiebung in beiden Reihen. Insbesondere ordnen sich die Carbamidsäureester gut ein. Darüber hinaus zeigen C=O-haltige C-Verbindungen, daß wie bei den Borverbindungen vom Typ RB(OR')NR["]₂ der Sauerstoff zum Ausgleich des Elektronendefizits, d.h. zur Minderung der positiven Ladung am Carbonylkohlenstoffatom, beiträgt¹¹).

Im Gegensatz zu der linearen Korrelation in Abb. 1 führt ein Vergleich der δ^{13} C-Werte des Carbonylkohlenstoffs in den betrachteten Kohlenstoff-Stickstoff-Verbindungen mit den δ^{11} B-Daten der vergleichbaren Aminoborane zu dem in Abb. 2 gezeigten nicht linearen Gang. Eine qualitative Übereinstimmung ergibt sich insofern, als für beide Verbindungsreihen eine Tieffeldverschiebung des betreffenden NMR-Signals mit steigender Positivierung des beobachteten Kerns auftritt. Folgende gleichsinnige Einflüsse fallen auf: a) Der Übergang von offenkettigen zu cyclischen Verbindungen (Aceton \rightarrow Cyclopentanon; Triäthylboran $\rightarrow B$ -Äthylboracyclopentan) verursacht

Abb. 1. Korrelation von δ^{14} N-Daten von Tetramethylharnstoff, N-Methylcarbamidsäureäthylester, N,N-Dimethylacetamid und Diacetamid mit entsprechenden Bor-Stickstoff-Verbindungen (ausgezogene Kurve), Guanidinium- Amidinium- und Imonium-Ionen mit vergleichbaren Aminoboranen (gestrichelte Kurve)

eine Tieffeldverschiebung der NMR-Signale¹⁹⁾. b) π -Systeme, z. B. Vinylgruppen, die an das sp²-hybridisierte C- bzw. B-Atom gebunden sind, bewirken merkliche Hochfeldverschiebungen. Diese π -Systeme stehen in starker Wechselwirkung mit dem sp²-C- bzw. -B-Zentrum und führen zu einer höheren π -Ladungsdichte an diesen Atomen²⁰⁾.

¹⁹⁾ CNDO/S-Rechnungen für B(CH₃)₃ (16a) und (CH₂)₄BCH₃ (17a) führen zu einer geringeren π-Ladungsdichte am Boratom im Vergleich zum Trimethylboran.

²⁰⁾ D. R. Armstrong und P. G. Perkins, Theor. Chim. Acta 4, 362 (1966).

Abb. 2. Korrelation von δ^{11} B-Daten verschiedener Borane mit δ^{13} C-Werten des Carbonylkohlenstoffs von Ketonen und Carbonsäurederivaten

c) Die Verschiebungsdifferenzen Δ^{13} C bzw. Δ^{11} B für die Paare [(CH₃)₂N]₂CO/(CH₃)₂NC(O)CH₃ (Δ^{13} C -5.2 ppm) und [(CH₃)₂N]₂BCH₃/(CH₃)₂NB(CH₃)₂ (Δ^{11} B -11.1 ppm) und für die Methoxyverbindungen (CH₃O)₂CO/CH₃OC(O)CH₃ (Δ^{13} C -18.2 ppm) und (CH₃O)₂BCH₃/CH₃OB(CH₃)₂ (Δ^{11} B -23.5 ppm) sind für die Dimethylamino- wesentlich kleiner als für die Methoxyverbindungen. Dieser Befund läßt sich mit der stärkeren CN- bzw. BN-(pp) π -Wechselwirkung im Vergleich zur CO- bzw. BO-Wechselwirkung²¹⁾ interpretieren. Hingegen sinkt die Abschirmung für den Carbonylkohlenstoff beim Übergang CH₃C(O)NH₂ zu [CH₃C(O)]₂NH um sehr viel weniger als für das Boratom, wenn man (CH₃)₂BNH₂ und [(CH₃)₂B]₂NH betrachtet ^{22,23}).

Borane und Carbonium-Ionen

Carbonium-Ionen und die mit ihnen isoelektronischen Borane zeigen erstaunliche Ähnlichkeiten in den physikalischen Eigenschaften, z. B. den Elektronenspektren^{24–27)}. Die strukturelle Analogie zwischen $(H_3C)_3C^+$, $(D_3C)_3C^-$, $(H_3C)_3B$ und $(D_3C)_3B$

²¹⁾ H. J. Becher und H. T. Baechle, Advan. Chem. Ser. 42, 71 (1964).

²²⁾ H. Nöth und H. Vahrenkamp, J. Organomet. Chem. 16, 357 (1969).

²³⁾ Im Gegensatz zu der Tieffeldverschiebung, die die Einführung einer Dimethylborylgruppe in ein Aminoboran bewirkt, beobachtet man für $\delta^{11}B$ von [(CH₃)₂B]₂Oeine geringe Hochfeldverschiebung im Vergleich zu (CH₃)₂BOCH₃. Diese wurde mit einer Aufweitung des BOB-Bindungswinkels in Beziehung gebracht (*H. Vahrenkamp*, Dissertation, Univ. München 1966), und durch eine Strukturbestimmung des Bis(dimethylboryl)oxids (Privatmitteil. *G. Gundersen*, Univ. Oslo 1973) bestätigt. Da darüber hinaus aber auch eine Verdrillung der C₂-BO- gegen die BOB-Ebene erfolgt, kann die Hochfeldverschiebung auch andere Ursachen haben. Ein Vergleich von Carbonsäure-methylestern mit Säureanhydriden zeigt ebenfalls eine geringe Hochfeldverschiebung des ¹³C-NMR-Signals für die Carbonyl-C-Atome⁵.

²⁴⁾ J. Rosenbaum und M. C. R. Symons, Proc. Chem. Soc. (London) 1959, 92.

²⁵⁾ B. G. Ramsey, J. Phys. Chem. 70, 611 (1966).

²⁶⁾ B. G. Ramsey und J. E. Leffler, J. Phys. Chem. 67, 2242 (1963).

²⁷⁾ D. S. Miller und J. E. Leffler, J. Phys. Chem. 74, 2571 (1970).

läßt sich schwingungsspektroskopisch nachweisen ²⁸⁾. Für das Cyclopropyldimethylcarbokation belegt die ¹³C- und ¹H-NMR-Spektroskopie eine Delokalisierung der positiven Ladung über den Cyclopropylring ^{29,30}; in Analogie dazu steht der δ^{11} B-Wert für das Cyclopropyldimethylboran, der auf eine π -Wechselwirkung des Cyclopropylrestes mit dem B-Atom hinweist³¹⁾.

Olah und Mitarbb. haben δ^{13} C-Daten für eine große Zahl "klassischer" und "nichtklassischer" Carbonium-Ionen ^{32,20,33–37}) gemessen und fanden für die "klassischen" Carbonium-Ionen eine lineare Beziehung zwischen der π -Elektronendichte q_c^{π} am Carboniumkohlenstoff und der chemischen Verschiebung $\delta^{13}C^{34,35}$. Da eine analoge lineare Abhängigkeit zwischen $\delta^{11}B$ und q_c^{π} besteht ³⁸, sollten $\delta^{13}C$ - und $\delta^{11}B$ -Daten vergleichbarer Carbonium-Ionen und Borane ebenfalls linear miteinander korrelieren. In Tab. 1 sind entsprechende Verbindungspaare aufgeführt. Vollständige Datensätze stehen allerdings noch nicht zur Verfügung; dennoch führen die zugänglichen Werte zu einem befriedigenden Ergebnis.

Da das Guanidinium-Ion³⁹⁾ und das Tris(dimethylamino)boran⁴⁰⁾ sehr ähnliche Strukturen haben – trigonal-planare CN₃- bzw. BN₃-Geometrie und $C_{2\nu}$ -Symmetrie für die H₂NC- bzw. C₂NB-Gruppierung – sind auch für die Verbindungspaare CH₃C(NH₂)₂+/CH₃B[N(CH₃)₂]₂ und (CH₃)₂CNH⁺₂/(CH₃)₂BN(CH₃)₂⁴¹⁾ vergleichbare Strukturen zu erwarten. Einen guten Hinweis auf diese Relation bietet die nahezu lineare Korrelation der δ^{14} N-Werte dieser Verbindungen (vgl. Abb. 1).

In der Reihe $R_nC(NR_2)_{3-n}^+$ (n = 0,1,2) wandert das ¹⁴N-NMR-Signal rascher feldab als in der entsprechenden Aminoboran-Reihe. Wir führen dies auf die im Vergleich zu B-N-Bindungen^{40,41}) kürzeren C-N-Kernabstände⁴²) zurück, die damit gekoppelte bessere Überlappung der p_z-Orbitale sowie auf die positive Ladung der Carbonium-Ionen.

Fehlende ¹³C-NMR-Daten für Guanidinium-, Amidinium- und Imonium-Ionen vereiteln bislang noch den Vergleich mit δ^{11} B von Aminoboranen. Im Gegensatz dazu steht das reichhaltige Material über ¹³C-NMR-Daten von Oxycarbonium-Ionen³³⁾.

- ²⁹⁾ G. A. Olah, C. L. Jeuell, D. P. Kelby und R. D. Porter, J. Amer. Chem. Soc. 94, 146 (1972).
- ³⁰⁾ S. S. Kabakoff und E. Mananworth, J. Amer. Chem. Soc. 92, 3234 (1970).
- 31) A. H. Cowley und T. A. Furtsch, J. Amer. Chem. Soc. 91, 39 (1969).
- 32) G. A. Olah, Angew. Chem. 85, 183 (1973); Angew. Chem., Int. Ed. Engl. 12, 173 (1973).
- 33) G. S. Olah, und M. A. White, J. Amer. Chem. Soc. 91, 5801 (1972).
- 34) G. A. Olah, Y. K. Mo und Y. Halpern, J. Amer. Chem. Soc. 94, 3551 (1972).
- 35) G. A. Olah und R. D. Porter, J. Amer. Chem. Soc. 93, 6876 (1971).
- 36) G. A. Olah und G. D. Matescu, J. Amer. Chem. Soc. 92, 1430 (1970).
- 37) G. J. Ray, A. K. Colter und J. R. Kurland, Tetrahedron 27, 735 (1971).
- 38) J. Kroner, D. Nölle und H. Nöth, Z. Naturforsch. 28B, 413 (1973).
- 39) D. J. Haas, D. R. Harris und H. H. Mills, Acta Crystallogr. B19, 676 (1965).
- 40) A. H. Clark und G. A. Anderson, Chem. Commun. 1969, 1082.
- ⁴¹⁾ G. J. Bullen und N. H. Clark, J. Chem. Soc. A 1970, 992.
- 42) Vgl. I.c.¹³⁾, S. 5.

²⁸⁾ G. A. Olah, J. R. De Member, A. Commenges und J. L. Bribes, J. Amer. Chem. Soc. 93, 459 (1971).

Diese können mit δ^{11} B-Werten von Alkoxyboranen³⁾ in Beziehung gesetzt werden, zumal die Planarität beider Spezies gesichert ist^{43,44)}.

Abb. 3 veranschaulicht die lineare Beziehung $\delta^{11}B/\delta^{13}C$.

Die chemischen Verschiebungen weichen für einige Verbindungspaare nicht unbeträchtlich von der Korrelationsgeraden⁴⁵⁾ ab. So liegt δ^{13} C des Fluordimethylcarbonium-lons (-142.7 ppm³⁴⁾) im Vergleich mit δ^{11} B von Fluordimethylboran (-59.0 ppm³⁾) bei zu tiefem Feld. Die verhältnismäßig gute Abschirmung, die der Bor-Kern in Fluorboranen erfährt, wird durch synergetische Effekte der stark polaren B-F- σ -Bindung und der erheblichen π -Rückbindung erklärt⁴⁶⁾. Offenbar unterscheiden sich die Bindungsverhältnisse der C-F-Bindung von jenen in der B-F-Bindung nicht unbeträchtlich, denn das ¹⁹F-NMR-Signal von (CH₃)₂CF⁺ (δ^{19} F -181.9 ppm⁴⁷⁾) liegt weit feldabwärts zu dem des (CH₃)₂BF (δ^{19} F + 20 ppm⁴⁸⁾). Gleiches gilt auch für die Protonenresonanzsignale der beiden Verbindungen (δ^{1} H -3.83⁴⁷⁾ bzw. -0.49 ppm⁴⁹⁾); allerdings sind diese Werte und auch die δ^{19} F-Daten nicht streng vergleichbar, da der Lösungsmitteleinfluß insbesondere beim Fluordimethylcarbonium-Ion beträchtlich sein dürfte. Aber sowohl die NMR-Daten von (CH₃)₂BF wie von

Abb. 3. Korrelation von δ^{13} C für Oxycarbonium-Ionen mit δ^{11} B von Methoxyboranen (mit × bezeichnete Wertepaare). Mit × sind Wertepaare gekennzeichnet, die stark von der Korrelationsgeraden abweichen. Das Zeichen \circ weist auf Verbindungspaare hin, von denen nur der δ^{13} C-Wert bekannt ist. Mit \odot eingetragene Werte gehen auf interpolierte Daten zurück

- ⁴⁵⁾ Die Korrelationsgerade folgt der Bezichung $\delta^{11}B = 0.393 \ \delta^{13}C 30.73$.
- 46) D. R. Armstrong und P. G. Perkins, Theor. Chim. Acta 15, 413 (1969).
- 47) G. Olah und M. B. Comisarow, J. Amer. Chem. Soc. 91, 2955 (1969).
- 48) T. D. Coyle, S. L. Stafford und F. G. A. Stone, J. Chem. Soc. 1961, 3103.
- 49) H. Nöth und H. Vahrenkamp, J. Organomet. Chem. 12, 23 (1968).

⁴³⁾ P. G. Jönnson und I. Olovsson, Acta Crystallogr. B 24, 559 (1968).

⁴⁴⁾ G. Gunderson, Privatmitteil. 1973. Danach ist die aus schwingungsspektroskopischen Untersuchungen abgeleitete C3h-Symmetrie (H. J. Becher, Z. Phys. Chem. (Frankfurt) 2, 276 (1954)) von B(OCH₃)₃ durch Elektronenbeugungsuntersuchungen bestätigt.

 $(CH_3)_3C^+$ (δ ¹H -4.07 ppm, als Hexafluoroantimonat in flüssigem SO₂⁵⁰) führen zu einer hohen NMR-Elektronegativität⁵¹) des Carboniumkohlenstoffs, der im $(CH_3)_2CF^+$ der des Fluors bereits nahe kommt.

Weitab von der Korrelationsgeraden liegen auch die Verbindungspaare $C(C_6H_5)_3^{+/}$ B $(C_6H_5)_3^{52}$, $C_6H_5C(CH_3)_2^{+/}C_6H_5B(CH_3)_2^{53.54}$ sowie $C_3H_5C(CH_3)_2^{+/}C_3H_5B(CH_3)_2^{25}$. Hierfür machen wir Verdrillungseffekte verantwortlich, denn der B-C-Abstand ist bei vergleichbaren Verbindungen deutlich größer als der C-C-Abstand. Aus den NMR-Daten der oben genannten Verbindungen folgt eine mit abnehmender sterischer Beanspruchung zunehmende π -Wechselwirkung der sp²-Zentren C⁺ und B mit den gebundenen π -Systemen⁵⁵.

Abschätzung von 811B von Boranen

Die lineare Abhängigkeit von δ^{13} C und δ^{11} B vergleichbarer Verbindungspaare veranlaßte uns, die Interpolationsgrundlage für δ^{11} B-Daten von der Messung nicht zugänglicher Borane zu überprüfen. Hierunter fällt insbesondere der δ^{11} B-Wert für monomeres BH₃. Hierfür finden sich die Werte -56.9^{56} und -57.1 ppm³⁾ in der Literatur.

Versuche, über paarweise additive Parameter δ^{11} B von BH₃ und anderen Boranen zu berechnen, erbrachten keine sinnvollen Resultate. Diese Methode hat sich hingegen bei Borverbindungen der Koordinationszahl 4 bewährt^{4c)}. Ihr Versagen bei Borverbindungen der Koordinationszahl 3 ist sicher darin zu sehen, daß Liganden, die π -Bindungen mit dem Boratom eingehen, nach Art und Zahl unterschiedliche Abschirmungsbeiträge zugeordnet werden müssen. Daher gingen wir von einigen Verbindungsreihen aus, die wir mit den δ^{13} C-Daten entsprechender Carbonium-Ionen verglichen.

Dem δ^{13} C-Wert für (CH₃)₂CH⁺ (-125.0 ppm)³³) ist auf Grund der Korrelationsgeraden der Abb. 3 ein δ^{11} B von -80.0 ppm für monomeres (CH₃)₂BH zuzuordnen. Überprüfbar ist dieser Wert mit dem für monomeres Bis(2,3-dimethylbutyl)boran ("Dithexylboran")⁵⁷). Für diese Verbindung bestimmten wir δ^{11} B zu -81.1 ppm ($J_{BH} = 114$ Hz). Da sperrige Alkylgruppen im Vergleich zu Methylverbindungen auch bei Trialkylboranen keinen großen Einfluß auf δ^{11} B nehmen, ist der der Abb. 3 entnommene δ^{11} B-Wert für (CH₃)₂BH sinnvoll.

52) H. Landesmann und R. E. Williams, J. Amer. Chem. Soc. 83, 2663 (1961).

⁵⁰⁾ G. Olah, E. B. Baker, J. C. Evans, W. S. Tolgyveri, J. S. McIntyre und I. J. Bastien, J. Amer. Chem. Soc. 86, 1360 (1964).

⁵¹⁾ H. Spieseke und W. G. Schneider, J. Chem. Phys. 35, 722 (1961).

⁵³⁾ G. Olah, R. D. Porten, C. L. Jeuell und A. M. White, J. Amer. Chem. Soc. 94, 2044 (1972).
54) Für 8¹¹B von C₆H₅B(CH₃)₂ erwarteten wir einen Wert um -77 ppm, da wir das ¹¹B-NMR-Signal von B-Phenylboracyclohexan bei -77.5 ppm beobachteten. In dem bei der Methylierung von C₆H₃BCl₂ mit Sn(CH₃)₄ anfallenden Reaktionsgemisch fand sich neben Signalen von B(CH₃)₃, (C₆H₅)₂BCH₃ und B(C₆H₅)₃ ein Signal bei -76 ppm, das wir dem in reiner Form noch nicht isolierten C₆H₅B(CH₃)₂ zuordnen.

⁵⁵⁾ Hierzu vergleiche man die δ¹³C-Daten von (C₆H₃)₃C⁺(-18.1 ppm) und (C₆H₃)₂CH⁺ (-5.6 ppm)³³ mit δ¹¹B von (C₆H₃)₃B (-60 ppm)⁵² und (C₆H₃)₂BCH₃ (-70.6 ppm). Für das freie, monomere (C₆H₃)₂BH kann man ein ¹¹B-NMR-Signal bei höherem Feld als für (C₆H₃)₂BCH₃ erwarten, etwa um -65 ppm. Monomere Alkyl- und Arylborane mit BH-Bindungen sind wegen ihrer Dimerisierungstendenz nur in wenigen Fällen direkt meßbar.

⁵⁶⁾ C. D. Good und D. M. Ritter, J. Amer. Chem. Soc. 84, 1162 (1962).

⁵⁷⁾ H. C. Brown, J. J. Katz und E. Negishi, J. Amer. Chem. Soc. 94, 4025 (1972).

Ersetzt man eine Methylgruppe in $(CH_3)_2COH^+$ bzw. $(CH_3)_2CCI^+$ durch Wasserstoff, dann verschiebt sich $\delta^{13}C$ um 13.4 bzw. 12.2, d.h. im Mittel um 12.8 ppm zu höherem Feld. Danach sollte das ¹³C-NMR-Signal von $CH_3CH_2^+$ bei -112.2 ppm liegen, da $\delta^{13}C$ von $(CH_3)_2CH^+$ zu -125.0 ppm bestimmt wurde. Das abgeschätzte $\delta^{13}C$ für $CH_3CH_2^+$ stimmt befriedigend mit dem berechneten (-109.3 ppm⁵⁸) überein. Hieraus folgt für $CH_3BH_2 \delta^{11}B - 75.0$ ppm und für $BH_3 \delta^{11}B - 70.0$ ppm, denn für das Carbonium-Ion CH_3^+ erhält man bei analogem Vorgehen ($CH_3CH(OH)^+ \rightarrow H_2COH^+$: $\Delta^{13}C + 13.4$ ppm) den Wert -98.8 ppm. Schließlich erhält man mit $\delta^{13}C - 107.8$ ppm⁶⁰) für $CH_3C(H)CI^+$ ein $\delta^{11}B - 73.5$ ppm für $CH_3B(H)CI$.

Nach dieser neuen Interpolation liegt δ^{11} B für BH₃ um -13 ppm bei niedrigerem Feld im Vergleich mit den älteren Angaben^{3.56)}. Der Grund für diese Diskrepanz dürfte vor allem darin liegen, daß den Abschätzungen von δ^{11} B(BH₃) nur wenige NMR-Daten zu Grunde lagen⁶¹⁾.

Über die Korrelationsgerade erhält man für H₂BOCH₃ $\delta^{11}B - 42.2 \text{ ppm}$, da für H₂COH⁺ $\delta^{13}C$ zu -29.2 ppm³³⁾ bestimmt wurde. Eine Berechnung in Analogie zu⁶¹⁾ liefert $\delta^{11}B - 42.5$ ppm. Eine gute Übereinstimmung wird auch für $\delta^{11}B$ von monomerem H₂BN(CH₃)₂ erzielt: die Rechnung ergibt --37.3 ppm, der experimentell bestimmte Wert beträgt -37.1 ppm. Bei der abschätzenden Berechnung müssen sterische Effekte unbedingt berücksichtigt werden. Wir gingen daher von $\delta^{11}B - 22$ ppm für ein gerüstplanares B[N(CH₃)₂]₃ aus, d. h. wir verwendeten die $\delta^{11}B$ -Daten des 1,8,10-Triaza-3-boradecalins und des B(NHCH₃)₃ und nicht -27.3 ppm für das bekanntlich gerüstverdrillte B[N(CH₃)₂]₃⁴⁰⁾. Für CH₃BX₂ (X = N(CH₃)₂) verwendeten wir daher ebenfalls den $\delta^{11}B$ -Wert -31.7 ppm für CH₃B(NHCH₃)₂. Dennoch sind diese Interpolationen zur Abschätzung von $\delta^{11}B(BH_3)$ weniger gut geeignet als der Bezug auf die Korrelationsgerade.

Der neue δ^{11} B-Wert für BH₃ führt zu einer besseren Übereinstimmung zwischen den Hochfeldverschiebungen, die bei der Anlagerung von Aminen oder Hydrid an BH₃ bzw. BR₃ erfolgen. Der Anisotropieeffekt von H und R ist klein⁶²⁾. Sind sterische Effekte in Addukten, die zur Schwächung der BH- bzw. BN-Bindung beitragen können, ausgeschlossen, dann sind annähernd gleiche Verschiebungsdifferenzen zu erwarten. Dies ist bei Benützung des neuen BH₃-Wertes der Fall.

Bezieht man die, π -Beiträge" zur chemischen Verschiebung³⁾ auf die neue chemische Verschiebung für BH₃, dann gilt naturgemäß weiterhin, daß der π -Bindungsbeitrag mit abnehmender Zahl π -bindungsfähiger Liganden am Boratom zunimmt. Die Daten

⁵⁸⁾ Berechnet mit der Beziehung³⁶⁾ $\delta^{13}C = -306(1-q_c^{\pi}) + 160$ unter Benützung der π-Elektronendichte $q_c^{\pi} = 0.120$ für CH₃CH₂+⁵⁹⁾.

⁵⁹⁾ P. A. Kollmann, W. F. Trager, S. Rothenberg und J. E. Williams, J. Amer. Chem. Soc. 95, 458 (1973).

⁶⁰⁾ G. A. Olah, D. A. Beal und P. W. Westermann, J. Amer. Chem. Soc. 95, 3387 (1973).

⁶¹⁾ Unseren älteren Untersuchungen³⁾ lagen die δ¹¹B-Werte folgender Verbindungsreihen zu Grunde: BX₃ → HBX₂ → (BH₃) und BX₃ → C₂H₅BX₂ → (C₂H₅)₃B (X = N(CH₃)₂, OCH₃, F). Stützt man sich auf die nun zugänglichen Reihen BX₃ → H₂BX → (BH₃) und BX₃ → (C₂H₅)₂BX → (C₂H₅)₃B, dann erhält man für δ¹¹B(BH₃) - 64.0 ppm. Die analoge Operation mit HBX₂ → H₂BX → (BH₃) und C₂H₅BX₂ → (C₂H₅)₂BX → (C₂H₅)₃B ergibt δ¹¹B(BH₃) - 66.0 ppm. Denerforderlichen Wert für H₂BF erhielten wir mit der Relation (δ HBF₂ - δ H₂BF): (δ CH₃BF₂ - δ (CH₃)₂BF) = (δ BF₃ - δ HBF₂): (δ BF₃ - δ CH₃BF₂) zu - 45.9 ppm. Dies führte dann zum δ¹¹B-Mittelwert für H₂BX mit δ¹¹B - 41.7 ppm.

⁶²⁾ J. A. Pople, Proc. Royal. Soc. Ser. A 239, 550 (1957).

der Tab. 4 zeigen, daß die π -Rückbindungsliganden F, OCH₃ und N(CH₃)₂ für Borane vom Typ RBX₂ (R = H, C₂H₅) fast identische " π -Beiträge" liefern, während in Verbindungen R₂BX die CH₃O-Gruppe einen höheren Beitrag beisteuert. Die Abstufungen der π -Beiträge für F, OCH₃ und N(CH₃)₂ geben die neuen, korrigierten Werte besser wieder als die ursprünglichen³⁾.

Verbindung	ppm ^{a)}	ppm ^{b)}	
BF ₃	43	28.2	
HBF ₂	45	32.1	
$C_2H_5BF_2$	47	32.3	
H ₂ BF	40	33.2	
(C ₂ H ₅) ₂ BF	45	30.3	
B(OCH ₃) ₃	37	27.1	
HB(OCH ₃) ₂	40	31.9	
$C_2H_5B(OCH_3)_2$	42	31.9	
H ₂ BOCH ₃	40	38.2	
(C ₂ H ₅) ₂ BOCH ₃	47	37.5	
B(NHCH ₃) ₃	30	25.6	
$HB[N(CH_3)_2]_2$	32	30.3	
$C_2H_5B(NHCH_3)_2$	36	31.2	
H ₂ BN(CH ₃) ₂	40	42.7	
(C ₂ H ₅) ₂ BNHCH ₃	49	43.8	

Tab. 4. " π -Bindungsbeiträge" zur chemischen Verschiebung δ^{11} B je π -Rückbindungsligand. Den Daten liegt $\delta^{11}B - 70.0$ ppm für BH₃ zu Grunde (Werte in der dritten Spalte)

^{a1} Bezogen auf $\delta^{11}B = 57.1$ ppm für BH₃³¹. ^{b)} Bezogen auf $\delta^{11}B = 70.0$ ppm für BH₃.

Für die Unterstützung unserer Arbeit danken wir dem Fonds der Chemischen Industrie und der Badischen Anilin- & Soda-Fabrik AG.

[86/74]